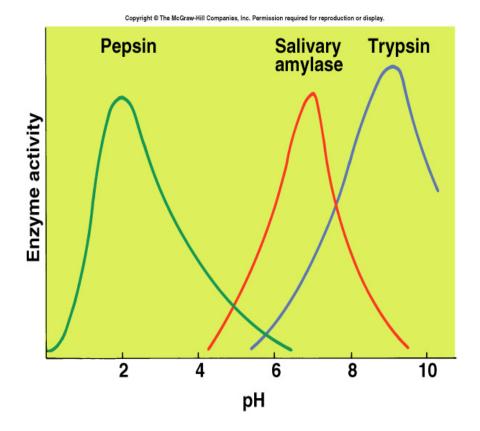
Factors Influencing Enzyme Activity

- Temperature
- pH
- Water activity
- Ionic Strength
- Chemicals
 - Chelating agents
 - Reducing agents

Temperature

- Enzymes function very slowly at sub-freezing temperatures
- Optimal activity in the 30-40C range
- Denature above 45C



Temperature

- Freezing
 - Activity depends on the enzyme (0 to -10C)
 - Below –10C almost always decrease activity
- Factors involved in inconsistent behavior
 - Composition of medium
 - Rate and extent of freezing
 - Concentration effects
 - Viscosity
 - Changes in phase (crystallization of water, solidification of triacylglycerides)

рΗ

- Extremes generally inactivate enzymes
- pH optimum
- Maximum activities between pH 4.5 8.0
- Narrow pH range
- Exceptions
 - Pepsin: optimum pH is 1.8
 - Trypsin: optimum pH is 9.8

Water activity

- Dried foods
 - Restricted water activity
 - Susceptible to enzymatic spoilage
- The rate of enzymatic reactions in dried products is limited by the rate at which the substrate diffuses to the enzyme
- Heat stability

Electrolytes and Ionic Strength

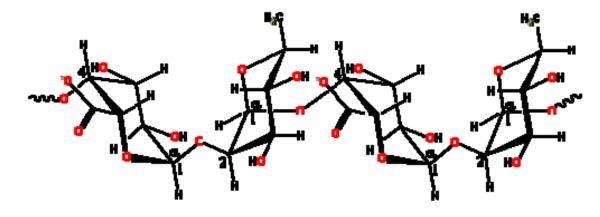
- Ions may be required components in the active site
- Cation requirements of enzymes is sometimes specific
- Salting in
- Salting out

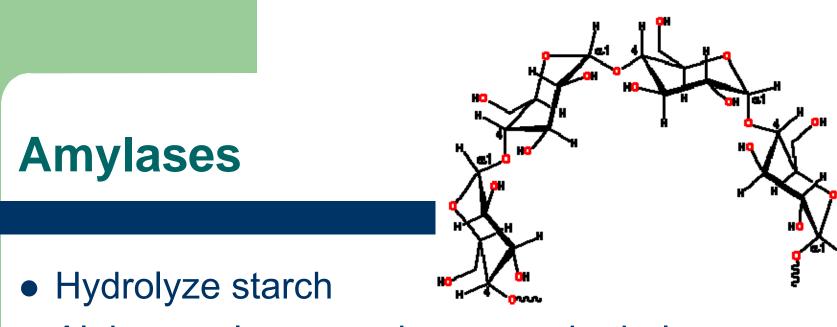
Chemicals

- Chelating agents
- Reducing agents
- Alterations of substrates

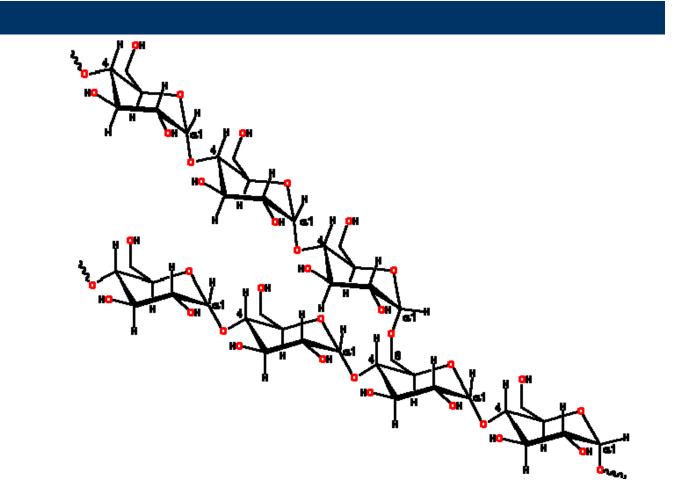
Enzymes in Food Processing

- Polyphenoloxidase
- Pectic enzymes
- Amylases
- Lipolytic enzymes
- Lipoxygenase
- Peroxidase
- Ascorbic acid oxidase
- Antioxidant enzymes


Polyphenoloxidase


- Enzymatic browning
- Cut surfaces of fruits and vegetables
- Catalyze 2 types of reactions
- Active between pH 5-7
- Cu cofactor
- Inhibition

Pectic Enzymes


- Pectic lyases: high-methoxyl pectins
 - Split glycosidic bonds adjacent to methyl ester
- Structural elements
 - Changes in texture
 - Processing aids

- Alpha-amylase endoenzyme hydrolyzes α-1,4 glucan linkages in random manner
 - Yields dextrins and oligosaccharides
 - Liquefying enzyme
 - Decrease viscosity
 - Increase of reducing power
 - Loss of colored complex with I₂

Amylases

Amylases

- β-amylase --> Exoenzyme
 - Attacks only the end units
 - Removes maltose units only from non-reducing end
 - Stops 2-3 glucose molecules from branch point
 - Limit dextrins
- Gluco-amylase --> glucose
- Pullulanase β 1,6 link (debranching)

Amylases

- Provide sugars for fermentation
- Reducing sugars
- Alter texture, mouth-feel, sweetness, moistness

Lipolytic enzymes

• Lipase

- Breaks fatty acid off triacylglyceride
- Produce flavor in cheese making
 - eg butyric acid or caproic acid
- Phospholipases
 - Reacts with glycerophospholipids
 - 4 ester functions can be hydrolyzed

Lipoxygenase

		Peroxidation specificity ¹	
Food	pH optimum	9- LOOH(%)	13- LOOH(%)
Soybean, L-1	9	5	95
Soybean, L-2	6.5	50	50
Pea L-2	6.5	50	50
Peanut	6	0	100
Potato	5.5	95	5
Tomato	5.5	95	5
Wheat	6	90	10
Cucumber	5.5	75	25
Apple	6	10	90
Strawberry	6.5	23	77
Gooseberry	6.5	45	55

Changes in quality

- Color
 - Bleaching of carotenoids
 - Xanthophyll, lycopene
 - Loss of chlorophyll
- Flavor
 - Off-flavors
- Texture
 - Favorable effects on wheat flours
 - Control SS-SH balance & hydrophobic bonding
- Nutritional
 - Destruction of Vit A
 - Destruction of essential fatty acids

Peroxidases

- Blanching indicator
- Heme: Iron cofactor
- Oxidative deterioration of Vit C
- Bleaching of carotenoids
- Decoloration of anthocyanins
- Peroxidative deterioration of fatty acids
 Off-flavor

Others

- Ascorbic acid Oxidase
 - L-ascorbic to DHA
- Catalase